It is known that the space of boundedly finite integer-valued measures on a complete separable metric space becomes a complete separable metric space when endowed with the weak-hash metric. It is also known that convergence under this topology can be characterised in a way that is similar to the weak convergence of totally finite measures. However, the original proofs of these two fundamental results assume that a certain term is monotonic, which is not the case as we show by a counterexample. We clarify these original proofs by addressing the parts that rely on this assumption and finding alternative arguments.