We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Salt marshes are valuable but complex biophysical systems with associated ecosystems. This presents numerous challenges when trying to understand and predict their behaviour and evolution, which is essential to facilitate their continued and sustainable use, conservation and management1. Detailed understanding of the hydrodynamics, sediment dynamics, and ecology that control the system is required, as well as their numerous interactions2,3, but is complicated by spatial and temporal heterogeneity at a range of scales4,5. These complex interactions and feedbacks between the physical, biological, and chemical processes can be investigated in situ following natural, unintentional, or intentional manipulation6, but the mechanistic basis of any observations are confounded by the presence of collinear variables. Hence, laboratory investigations can be beneficial, as they provide the opportunity for systematic testing of subsets of coastal processes, mechanisms, or conditions typical of salt marsh systems, in the absence of confounding variables. With appropriate scaling, this allows a better understanding of the overall function of the salt marsh, and better predictions of their evolution.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.