The recent experimental results obtained for c-axis oriented YBaCuO thin films deposited at the optimized conditions for the microwave applications are presented and discussed. The emphasis is on the study of the relationship between oxygen profiles, crystallographic structure and electrical and physical properties of the films formed in situ at the same and optimized conditions of sample deposition and further submitted to the different conditions of sample cooling. The studies of the oxygen depth concentration profiles and of the oxygen contents are carried out using the recently developed Nuclear Reaction Analysis (NRA). These results are correlated, on one hand, with the measurements of the atomic composition and structure by RBS, XRD and TEM and, on the other hand, by the measurements of the electrical and physical properties Tc, Jc and microwave surface resistance Rs. All results are consistent with the idea that the fully oxygenated films are formed during in situ growth at T∼ 700°C. For T< 300°C, the oxygen interface transfer coefficient is very small and the oxygen content is practically preserved. However a large room temperature oxidation (corrosion like) takes place in the presence of water vapor. The fundamental and applied consequences of these findings for the mechanism of thin films growth and for the properties of the films in the presence of cathodic plasma or laser plume are analysed.