We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Alkylation of 1-butene with isobutane is employed industrially to produce C8 alkylates (such as trimethylpentane) as high-octane motor fuel. Such alkylates supply roughly up to 15% of the U.S. gasoline pool. However, the process uses large quantities of sulfuric acid (as catalyst) generating acid waste whose handling poses health and environmental hazards. The main pollutants are sulfur dioxide (SO2) emissions (which causes acid rain) and acid leakage in the alkylation unit. This chapter presents an alternate process that uses a solid catalyst (Nafion® supported on silica) in dense CO2 media to produce C8 alkylates (solid acid/CO2 process). Although the environmental concerns with SO2 emissions and acid leakage are eliminated, the activity of the solid acid catalyst is lower than sulfuric acid resulting in an approximately 30% higher capital investment than the conventional process. For C8 alkylate productivity, capital investments and operating costs to be nearly identical, the required olefin throughput in the solid acid/CO2 process must be four-fold higher. Such analyses establish performance targets for the solid acid/CO2 process to be commercially viable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.