In this paper, a new approach to modeling and controlling the problems associated with a morphing unmanned aerial vehicle (UAV) is proposed. Within the scope of the study, a dataset was created by obtaining a wide range of aerodynamic parameters for the UAV with Ansys Fluent under variable conditions using the computational fluid dynamics approach. For this, a large dataset was created that considered 5 different angles of attack, 14 different swept angles, and 5 different velocities. While creating the dataset, the analyses were verified by considering studies that have been experimentally validated in the literature. Then, an artificial intelligence-based model was created using the dataset obtained. Metaheuristic algorithms such as the artificial bee colony algorithm, ant colony algorithm and genetic algorithms are used to increase the modeling success of the adaptive neuro-fuzzy inference system (ANFIS) approach. A novel modeling approach is proposed that constitutes a new decision support system for real-time flight. According to the results obtained, all the ANFIS models based on metaheuristic algorithms were more successful than the traditional approach, the multilinear regression model. The swept angle that meets the minimum lift needed by the UAV for different flight conditions was estimated with the help of the designed decision support system. Thus, the drag force is minimised while obtaining the required lift force. The performance of the UAV was compared with the nonmorphing configuration, and the results are presented in tables and graphs.