We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyze the set-theoretic strength of determinacy for levels of the Borel hierarchy of the form $\Sigma _{1 + \alpha + 3}^0 $, for α < ω1. Well-known results of H. Friedman and D.A. Martin have shown this determinacy to require α + 1 iterations of the Power Set Axiom, but we ask what additional ambient set theory is strictly necessary. To this end, we isolate a family of weak reflection principles, Π1-RAPα, whose consistency strength corresponds exactly to the logical strength of ${\rm{\Sigma }}_{1 + \alpha + 3}^0 $ determinacy, for $\alpha < \omega _1^{CK} $. This yields a characterization of the levels of L by or at which winning strategies in these games must be constructed. When α = 0, we have the following concise result: The least θ so that all winning strategies in ${\rm{\Sigma }}_4^0 $ games belong to Lθ+1 is the least so that $L_\theta \models {\rm{``}}{\cal P}\left( \omega \right)$ exists, and all wellfounded trees are ranked”.
Let M be a transitive model of ZFC. We say that a transitive model of ZFC, N, is an outer model of M if M ⊆ N and ORD ∩ M = ORD ∩ N. The outer model theory of M is the collection of all formulas with parameters from M which hold in all outer models of M (which exist in a universe in which M is countable; this is independent of the choice of such a universe). Satisfaction defined with respect to outer models can be seen as a useful strengthening of first-order logic. Starting from an inaccessible cardinal κ, we show that it is consistent to have a transitive model M of ZFC of size κ in which the outer model theory is lightface definable, and moreover M satisfies V = HOD. The proof combines the infinitary logic L∞,ω, Barwise’s results on admissible sets, and a new forcing iteration of length strictly less than κ+ which manipulates the continuum function on certain regular cardinals below κ. In the appendix, we review some unpublished results of Mack Stanley which are directly related to our topic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.