We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dynamic loading of the hat-shaped specimen of 2195-T6 aluminum lithium alloy was carried out with a split Hopkinson pressure bar at ambient temperature. The formation and evolution mechanisms of adiabatic shear band (ASB) in this alloy were investigated and then microstructure was further observed. The microstructure within ASB in 2195 aluminum alloy was characterized by means of optical microscopy and transmission electron microscopy. The width of ASB was about 20–30 um. Nano-grains (50–100 nm) were observed in the middle of shear zone. Experimental results show that the diffusive transformation took place within ASB during high strain rate deformation, namely the precipitates dissolving in the matrix in the process (within about 71 µs). Based on thermodynamics and kinetics analyses, dissolution of precipitates was firstly investigated during adiabatic shearing deformation, and a dissolution model was suggested in the present work. The diffusive transformation and the microstructure evolution within ASB in 2195 alloy were explained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.