We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates the effects of accelerated high-frequency repetitive transcranial magnetic stimulation (aHF-rTMS), applied to the left dorsolateral prefrontal cortex (DLPFC), on locus coeruleus (LC) functional connectivity in the treatment of refractory medication-resistant major depression (MRD).
Methods
We studied 12 antidepressant-free refractory MRD patients, focusing on how aHF-rTMS affects the LC, a central component of the brain’s noradrenergic system and key to mood regulation and stress response.
Results
A stronger decrease in LC functional connectivity following aHF-rTMS treatment resulted in better clinical improvement. We observed such LC functional connectivity decreases with several brain regions, including the superior frontal gyrus, precentral gyrus, middle occipital gyrus, and cerebellum. Moreover, our exploratory analyses hint at a possible role for E-field modeling in forecasting clinical outcomes. Additional analyses suggest potential genetic and dopaminergic factors influencing changes in LC functional connectivity in relation to clinical response.
Conclusions
The findings of this study underscore the pivotal role of the LC in orchestrating higher cognitive functions through its extensive connections with the prefrontal cortices, facilitating decision-making, influencing attention, and addressing depressive rumination. Additionally, the observed enhancement in LC-(posterior) cerebellar connectivity not only highlights the cerebellum’s role in moderating clinical outcomes through noradrenergic system modulation but also suggests its potential as a predictive marker for aHF-rTMS efficacy. These results reveal new insights into the neural mechanisms of refractory depression and suggest therapeutic targets for enhancing noradrenergic activity, thereby addressing both cognitive and psychomotor symptoms associated with the disorder.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.