In this paper, we prove that the Lp approximants naturally associated to a supremal functionalΓ-converge to it. This yields a lower semicontinuity result for supremalfunctionals whose supremand satisfy weak coercivity assumptions aswell as a generalized Jensen inequality. The existence of minimizersfor variational problems involving such functionals (together with aDirichlet condition) then easily follows. In the scalarcase we show the existence of at least one absolute minimizer (i.e. localsolution) among these minimizers. We provide two different proofs ofthis fact relying on different assumptions and techniques.