We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Water erosion has become an important problem and is expected to be affected by climate change. This study assessed the vulnerability of global water erosion during 1992–2015 based on RUSLE method. The research objective was to explore the spatial pattern of global water erosion vulnerability change in recent decades and identify the impacts of rainfall change on water erosion. The results show that global water erosion vulnerability increased over 54.23 per cent of the surface during 1992–2015, and the surface with significant increasing trends accounted for 11.96 per cent. There is great heterogeneity in the trends across the world. The change rate of water erosion vulnerability on croplands and bare lands was significantly higher than that of natural vegetation. Most areas exhibiting statistically significant trends were in cold and arid climate zones (CZs), which indicates that bare lands and croplands in cold and arid CZs were more sensitive to climate change with regard to water erosion. The results offer a global view of impacts of rainfall change on water erosion and suggest that enhancing the vegetation growth and taking soil conservation measures on croplands and bare lands in the cold and arid CZs could reduce the erosion threat.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.