In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.