We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A unified force control scheme for an autonomous underwater robotic system is proposed in this paper. This robotic system is composed of a six degree-of-freedom autonomous underwater vehicle (AUV) and a robotic arm that is mounted on the AUV. A unified force control approach, which combines impedance control with hybrid position/force control by means of fuzzy switching to perform autonomous underwater manipulation, is presented in this paper. This controller requires a dynamic model of the underwater
vehicle-manipulator system. However, it does not require any model of the environment and therefore will have the potential to be useful in underwater tasks where the environment is generally unknown. The proposed approach combines the advantages of impedance control with hybrid control so that both smooth contact transition and force trajectory tracking can be achieved. In the absence of any functional autonomous underwater vehicle-manipulator system that can be used to verify the proposed controller, extensive computer simulations are performed and the results are presented in the paper.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.