The lichen Xanthoria elegans has been exposed to space conditions and simulated Mars-analogue conditions in the lichen and fungi experiment (LIFE) on the International Space Station (ISS). After several simulations and short space exposure experiments such as BIOPAN, this was the first long-term exposure of eukaryotic organisms to the hostile space conditions of the low Earth orbit (LEO). The biological samples were integrated in the EXPOSE-E facility and exposed for 1.5 years outside the ISS to the combined impact of insolation, ultraviolet (UV)-irradiation, cosmic radiation, temperatures and vacuum conditions of LEO space. Additionally, a subset of X. elegans samples was exposed to simulated Martian environmental conditions by applying Mars-analogue atmosphere and suitable solar radiation filters. After their return to Earth the viability of the lichen samples was ascertained by viability analysis of LIVE/DEAD staining and confocal laser-scanning microscopy, but also by analyses of chlorophyll a fluorescence. According to the LIVE/DEAD staining results, the lichen photobiont showed an average viability rate of 71%, whereas the even more resistant lichen mycobiont showed a rate of 84%. Post-exposure viability rates did not significantly vary among the applied exposure conditions. This remarkable viability is discussed in the context of particular protective mechanisms of lichens such as anhydrobiosis and UV-screening pigments.