We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this work was to compare different excitation modes for the analysis of light elements from carbon (Z = 6) upwards using a total reflection X-ray fluorescence analysis (TXRF) vacuum chamber which allows the attachment of different X-ray tubes and detectors. In the first set of experiments, two water-cooled high-power X-ray tubes with Cr (Z = 25) and Cu (Z = 29) anodes, respectively, were compared with an air-cooled low-power tube with Mo anode (Z = 42) and a thin Be window for the transmission of Mo-L lines. In the first two cases, monochromatic Kα radiation was used for excitation, while in the case of the Mo tube the multilayer acted as a cut-off reflector and part of the Mo bremsstrahlung continuum together with the Mo-L series were used for excitation. Multi-element standards containing elements ranging from Na (Z = 11) to Ti (Z = 22) were analyzed by a silicon drift detector (SDD) with a 300 nm ultrathin polymer window (UTW). Detection limits were calculated and compared for the three excitation modes. The second set of experiments was performed using an air-cooled low-power X-ray tube with Rh anode (Z = 45) in order to show that a conventional SDD with a 25 μm beryllium window can be used for the detection of elements from Na upwards. The use of compact air-cooled low-power X-ray tubes together with Peltier-cooled SDDs with UTW should lead to the development of highly sensitive tabletop vacuum TXRF spectrometers with a design optimized for the analysis of light elements. Detection limits as achieved by vacuum chambers using conventional water-cooled high-power tubes (e.g. Streli et al., 2004) are realistically achievable with the new approach.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.