We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ras Ibn Hani peninsula, a wave-dominated tombolo (800 × 1000 m) on the Syrian coast, provides evidence for significant Holocene changes that can be linked to geological inheritance, rising post-glacial sea level, sediment supply and human impacts. Initial development of Ras Ibn Hani's coastal system began ~ 8000 years ago when shallow marine environments formed in a context of rising post-glacial sea level. Following relative sea-level stabilization ~ 6000 cal yr BP, beach facies trace the gradual formation of a wave-dominated sandbank fronted by a ~ 2300 × ~ 500 m palaeo-island whose environmental potentiality was attractive to Bronze Age societies. A particularly rapid phase of tombolo accretion is observed after ~ 3500 cal yr BP characterised by a two- to fourfold increase in sedimentation rates. This is consistent with (i) a pulse in sediment supply probably driven by Bronze Age/Iron Age soil erosion in local catchments, and (ii) positive feedback mechanisms linked to regionally attested neotectonics. Archaeological remains and radiocarbon datings confirm that the subaerial tombolo was probably in place by the Late Bronze Age. These data fit tightly with other eastern Mediterranean tombolo systems suggesting that there is a great deal of predictability to their geology and stratigraphy at the regional scale.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.