We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Uptake and translocation of glyphosate in three commercial formulations were examined in velvetleaf, a dicotyledonous weed that is commonly treated with glyphosate. The formulations included Roundup® (MON 35085), Roundup Ultra, and Touchdown® as sold in Canada. A minimal amount of 14C-glyphosate was spiked into a lethal rate of each formulation, and the short-term (3 to 72 h) uptake into the treated leaf and subsequent translocation into the plant were measured. Time-course studies showed very rapid uptake and translocation of glyphosate in the Ultra formulation. In comparison, the uptake and translocation of glyphosate in Touchdown was much slower but continued throughout the 72-h period. Glyphosate in the Roundup formulation showed intermediate uptake and translocation. Tissue necrosis at the application sites of Ultra and Roundup was visible within 24 h after treatment. Examinations using stereo and fluorescence microscopy revealed extensive cell death and tissue disruption. Tissue necrosis from Ultra and Roundup was also observed in blank formulations containing no glyphosate and therefore was likely caused by the surfactants. In contrast, the application sites of Touchdown produced little to no leaf damage. Our results demonstrated a direct correlation between tissue necrosis and rapid rates of glyphosate uptake and translocation.
Protein hydrolysates provide a rich source of protein which is useful in situations where excess protein is needed, such as during repair of tissue damage. The consumption of protein hydrolysates has been shown to result in more rapid uptake of amino acids compared with whole proteins or free-form amino acid mixtures and some peptides in hydrolysates exhibit biological activity. Early studies showed that protein hydrolysates are more effectively utilised than intact proteins or amino acids. In addition, they promote a strong insulinotropic effect, which reduces protein breakdown and enhances muscle and tissue uptake of branched-chain amino acids. These effects contribute to benefits of protein hydrolysates for enhancing repair of tissue damage caused by surgery, ulcers, burns and muscle-damaging exercise. While there is evidence that protein hydrolysates may be useful for facilitating tissue repair, additional research is needed to further examine various roles of protein hydrolysates in this process.
This chapter introduces electrophysiological and electrical principles that underlie deep brain stimulation (DBS), with the purpose of facilitating effective and efficient postoperative programming. In order to comprehensively explore the effects of DBS, the entire set of electrode configurations and stimulation parameters would have to be systematically tested. There is considerable evidence that DBS-related changes in neurotransmitters and neuromodulators are unlikely to fully explain the DBS mechanisms of action. The control of the stimulating current is quite different in constant-current versus constant-voltage devices. The electrical charge generated during the DBS pulse dissipates with distance from the electrode. The stimulation parameters and electrode configurations can be used to control the spatial extent and number of axons excited by the DBS pulse. Excessive stimulation can lead to tissue damage by several mechanisms. In addition, unbalanced charges can create other reactive chemical species that can cause tissue damage.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.