We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper addresses the dynamic simulation and control of structural vibrations of a 3-PRR parallel manipulator with three flexible intermediate links, to which are bonded lead zirconate titanate (PZT) actuators and sensors. Flexible intermediate links are modelled as Euler–Bernoulli beams with pinned-pinned boundary conditions. A PZT actuator controller is designed based on strain rate feedback (SRF) control. Control moments from PZT actuators are transformed to force vectors in modal space and are incorporated in the dynamic model of the manipulator. The dynamic equations are developed based on the assumed mode method for the flexible parallel manipulator with multiple PZT actuator and sensor patches. Numerical simulation is performed and the results indicate that the proposed active vibration control strategy is effective. Spectral analyses of structural vibrations further illustrate that deformations from structural vibration of flexible links are suppressed to a significant extent when the proposed vibration control strategy is employed, while the deflections caused by inertial and coupling forces are not reduced.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.