Quadrotors are unmanned aerial vehicles with many potential applications ranging from mapping to supporting rescue operations. A key feature required for the use of these vehicles under complex conditions is a technique to analytically solve the problem of trajectory planning. Hence, this paper presents a heuristic approach for optimal path planning that the optimization strategy is based on the indirect solution of the open-loop optimal control problem. Firstly, an adequate dynamic system modeling is considered with respect to a configuration of a commercial quadrotor helicopter. The model predicts the effect of the thrust and torques induced by the four propellers on the quadrotor motion. Quadcopter dynamics is described by differential equations that have been derived by using the Newton–Euler method. Then, a path planning algorithm is developed to find the optimal trajectories that meet various objective functions, such as fuel efficiency, and guarantee the flight stability and high-speed operation. Typically, the necessary condition of optimality for a constrained optimal control problem is formulated as a standard form of a two-point boundary-value problem using Pontryagin’s minimum principle. One advantage of the proposed method can solve a wide range of optimal maneuvers for arbitrary initial and final states relevant to every considered cost function. In order to verify the effectiveness of the presented algorithm, several simulation and experiment studies are carried out for finding the optimal path between two points with different objective functions by using MATLAB software. The results clearly show the effect of the proposed approach on the quadrotor systems.