We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a reductive group over an algebraically closed field $k$ of separably good characteristic $p>0$ for $G$. Under these assumptions, a Springer isomorphism $\phi : \mathcal {N}_{\mathrm {red}}(\mathfrak {g}) \rightarrow \mathcal {V}_{\mathrm {red}}(G)$ from the nilpotent scheme of $\mathfrak {g}$ to the unipotent scheme of $G$ always exists and allows one to integrate any $p$-nilpotent element of $\mathfrak {g}$ into a unipotent element of $G$. One should wonder whether such a punctual integration can lead to an integration of restricted $p$-nil $p$-subalgebras of $\mathfrak {g}= \operatorname {Lie}(G)$. We provide a counter-example of the existence of such an integration in general, as well as criteria to integrate some restricted $p$-nil $p$-subalgebras of $\mathfrak {g}$ (that are maximal in a certain sense). This requires the generalisation of the notion of infinitesimal saturation first introduced by Deligne and the extension of one of his theorems on infinitesimally saturated subgroups of $G$ to the previously mentioned framework.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.