We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Host–parasite co-evolutionary studies can shed light on diversity and the processes that shape it. Molecular methods have proven to be an indispensable tool in this task, often uncovering unseen diversity. This study used two nuclear markers (18S rRNA and 28S rRNA) and one mitochondrial (cytochrome oxidase subunit I) marker to investigate the diversity of nematodes of the family Pharyngodonidae parasitizing New Zealand (NZ) lizards (lygosomine skinks and diplodactylid geckos) and to explore their co-evolutionary history. A Bayesian approach was used to infer phylogenetic relationships of the parasitic nematodes. Analyses revealed that nematodes parasitizing skinks, currently classified as Skrjabinodon, are more closely related to Spauligodon than to Skrjabinodon infecting NZ geckos. Genetic analyses also uncovered previously undetected diversity within NZ gecko nematodes and provided evidence for several provisionally cryptic species. We also examined the level of host–parasite phylogenetic congruence using a global-fit approach. Significant congruence was detected between gecko-Skrjabinodon phylogenies, but our results indicated that strict co-speciation is not the main co-evolutionary process shaping the associations between NZ skinks and geckos and their parasitic nematodes. However, further sampling is required to fully resolve co-phylogenetic patterns of diversification in this host–parasite system.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.