We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book depicts a vivid and vibrant image of modern Main Belt asteroid science. In the last decade, thanks to the exploration by the NASA Dawn mission and the advent of high-resolution Earth-bound observations, we have entered a renaissance of Main Belt asteroid science. Formation theories, dynamical models, meteorite geochemical data, remote and in-situ observations synergistically show asteroids are leftover building blocks of planetary formation and tracers of important evolutionary processes (e.g., collisions, orbital migration) that have shaped the evolution of the early Solar System. Planned missions such as NASA’s Lucy and Psyche (scheduled to launch in 2021 and 2022) will surely provide additional colorful strokes to our ever-evolving portrait of the Main Belt.
The presence of ammonium on Ceres was first speculated based on telescopic data in the 1990s. Subsequent data from Dawn unambiguously confirmed the presence on Ceres’s surface. Ammonium has been identified within near-ubiquitous dark materials, and in salts in few localized bright faculae in the interiors of craters as we describe further in this chapter.
The presence of ammonium on Ceres is significant because it implies the availability of ammonia during its evolution. More broadly, understanding the processes that led to the presence of ammonium on Ceres provides important information on the aqueous environments in the early Solar System and the origins and dynamical histories of the large outer main belt asteroids. We briefly review the significance of ammonia and then describe what was known or speculated about ammoniated species on Ceres before Dawn’s arrival. We then review findings of the Dawn mission, in particular the detection and mapping of ammoniated phases by the Visible and Infrared spectrometer (VIR): which species host ammonia/ammonium, their abundance, and spatial distribution. We then discuss the potential origins and implications of ammonia, drawing on laboratory studies and modeling efforts. Finally, we summarize the key findings and the outstanding questions that remain for future investigation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.