In this paper, design, dynamic, and control of the motors of a spatial cable robot are presented considering flexibility of the joints. End-effector control in order to control all six spatial degrees of freedom (DOFs) of the system and motor control in order to control the joints flexibility are proposed here. Corresponding programing of its operation is done by formulating the kinematics and dynamics and also control of the robot. Considering the existence of gearboxes, flexibility of the joints is modeled in the feed-forward term of its controller to achieve better accuracy. A two sequential closed-loop strategy consisting of proportional derivative (PD) for linear actuators in joint space and computed torque method for nonlinear end-effector in Cartesian space is presented for further accuracy. Flexibility is estimated using modeling and simulation by MATLAB and SimDesigner. A prototype has been built and experimental tests have been done to verify the efficiency of the proposed modeling and controller as well as the effect of flexibility of the joints. The ICaSbot (IUST Cable-Suspended robot) is an under-constrained six-DOF parallel robot actuated by the aid of six suspended cables. An experimental test is conducted for the manufactured flexible joint cable robot of ICaSbot and the outputs of sensors are compared with simulation. The efficiency of the proposed schemes is demonstrated.