The red-blooded limpet ‘Shinkailepas’ briandi (Neritimorpha: Phenacolepadidae) is one of the commonest gastropod species at deep-sea hydrothermal vents on the Mid-Atlantic Ridge (MAR). We investigated its population connectivity along MAR as the first such study for gastropods and explored the importance of larval migration for the distribution of vent-endemic animals. Our analyses, based on 1.3-kbp DNA sequences from the mitochondrial COI gene, showed a panmictic population throughout its geographic and bathymetric ranges that span from the northernmost and shallowest Menez Gwen vent field (38°N; 814–831 m depth) to the southernmost and deepest Ashadze field (13°N; 4090 m). Early development of this species is presumed to have a long pelagic duration as a planktotrophic larva; the hatchling with a shell diameter of 170–180 μm attains a constant settlement size of 706 ± 8 μm (mean ± SD). Retention of eye pigmentation in newly settled juveniles, along with the genetic panmixia, suggests that the hatched larva of ‘S.’ briandi migrates vertically to the surface water, presumably to take advantage of richer food supplies and stronger currents for dispersal, as has been shown for confamilial species at hydrothermal vents and cold methane seeps.