We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many schizophrenia patients experience residual symptoms even after treatment. Electroconvulsive therapy (ECT) is often used in medication-resistant schizophrenia patients when pharmacologic interventions have failed; however, the mechanism of action is unclear. Brain-derived neurotrophic factor (BDNF) levels are reduced in drug-naive, first-episode schizophrenia and are increased by antipsychotic treatment. We tested the hypothesis that ECT increases serum BDNF levels by measuring BDNF concentrations in schizophrenia patients before and after they received ECT.
Methods
A total of 160 patients with schizophrenia were examined. The ECT group (n = 80) was treated with antipsychotics and ECT (eight to 10 sessions administered every other day). The drug therapy group (n = 80) received only antipsychotic treatment. A control group (n = 77) was recruited that served as the baseline for comparison.
Results
Baseline serum BDNF level in ECT group was lower than in controls (9.7 ± 2.1 vs. 12.4 ± 3.2 ng/ml; P < 0.001), but increased after ECT, such that there was no difference between the two groups (11.9 ± 3.3 vs. 12.4 ± 3.2 ng/ml; P = 0.362). There was no correlation between patients’ Positive and Negative Syndrome Scale (PANSS) score and serum BDNF level before ECT; however, a negative correlation was observed after ECT (total: r = −0.692; P < 0.01). From baseline to remission after ECT, serum BDNF level increased (P < 0.001) and their PANSS score decreased (P < 0.001). Changes in BDNF level (2.21 ± 4.10 ng/ml) and PANSS score (28.69 ± 14.96) were positively correlated in the ECT group (r = 0.630; P < 0.01).
Conclusions
BDNF level was lower in schizophrenia patients relative to healthy controls before ECT and medication. BDNF level increased after ECT and medication, and its longitudinal change was associated with changes in patients’ psychotic symptoms. These results indicate that BDNF mediates the antipsychotic effects of ECT.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.