We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a control algorithm for biped walking by extension of previous work in the fields of central pattern generator (CPG) and passive walking. The algorithm takes advantage of the passive dynamics of walking, assisting only when necessary with an intermittent sinusoidal oscillator. The parameterized oscillator is used to drive the hip joint; the triggering and ceasing of the oscillator during a walking cycle can be modulated by the sensory feedback. The results from simulation indicate a stable, efficient gait, and robustness against model inaccuracy and environmental variation. We also examine the effects of oscillator parameters and link parameters on the gait, and design a controller to suppress the bifurcation phenomenon based on the error of prior step periods.
The purpose of this paper is in duplicate to present computer simulation results of concurrent grasp and object manipulation by a pair of three degrees of freedom (3-dof) robot fingers with rigid hemispherical finger-ends that induce rolling contacts with an object and propose a guidance of gain tuning. Although the existence of a class of sensory feedback signals that realize stable grasp and orientation control of the object concurrently has been shown theoretically, the problem of tuning of their feedback gains has not yet been solved. This paper proposes a guideline for tuning sensory feedback gains by deriving a relationship between the object mass and damping coefficients of finger motions through analyzing the overall fingers-object dynamics and taking into account the well-known force/velocity characteristics of human muscle in muscle physiology.
This paper is concerned with a stability theory of motion governed by Lagrange's equation for a pair of multi-degrees of freedom robot fingers with hemi-spherical finger ends grasping a rigid object under rolling contact constraints. When a pair of dual two d.o.f. fingers is used and motion of the overall fingers-object system is confined to a plane, it is shown that the total degree of freedom of the fingers-object system is redundant for realization of stable grasping though there arise four algebraic constraints. To resolve the redundancy problem without introducing any other extra and artificial performance index, a concept of stability of motion starting from a higher dimensional manifold to a lower-dimensional manifold, expressing a set of states of stable grasp with prescribed contact force, is introduced and thereby it is proved in a rigorous way that stable grasp in a dynamic sense is realized by a sensory feedback constructed by means of measurement data of finger joint angles and the rotational angle of the object. Further, it is shown that there exists an additional sensory feedback that realizes not only stable grasp but also orientation control of the object concurrently. Results of computer simulation based on Baumgarte's method are presented, which show the effectiveness of the proposed concept and analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.