We apply appropriate maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. By supposing a suitable restriction on the norm of the traceless part of the second fundamental form, we show that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder, when its scalar curvature is positive, or to a spherical cylinder, when its scalar curvature is negative. Related to the compact case, we also establish a rigidity result.