Let ${\mathcal C}[{\mathcal X}]$ be any class of operators on a Banach space ${\mathcal X}$, and let ${Holo}^{-1}({\mathcal C})$ denote the class of operators A for which there exists a holomorphic function f on a neighbourhood ${\mathcal N}$ of the spectrum σ(A) of A such that f is non-constant on connected components of ${\mathcal N}$ and f(A) lies in ${\mathcal C}$. Let ${{\mathcal R}[{\mathcal X}]}$ denote the class of Riesz operators in ${{\mathcal B}[{\mathcal X}]}$. This paper considers perturbation of operators $A\in\Phi_{+}({\mathcal X})\Cup\Phi_{-}({\mathcal X})$ (the class of all upper or lower [semi] Fredholm operators) by commuting operators in $B\in{Holo}^{-1}({\mathcal R}[{\mathcal X}])$. We prove (amongst other results) that if πB(B) = ∏mi = 1(B − μi) is Riesz, then there exist decompositions ${\mathcal X}=\oplus_{i=1}^m{{\mathcal X}_i}$ and $B=\oplus_{i=1}^m{B|_{{\mathcal X}_i}}=\oplus_{i=1}^m{B_i}$ such that: (i) If λ ≠ 0, then $\pi_B(A,\lambda)=\prod_{i=1}^m{(A-\lambda\mu_i)^{\alpha_i}} \in\Phi_{+}({\mathcal X})$ (resp., $\in\Phi_{-}({\mathcal X})$) if and only if $A-\lambda B_0-\lambda\mu_i\in\Phi_{+}({\mathcal X})$ (resp., $\in\Phi_{-}({\mathcal X})$), and (ii) (case λ = 0) $A\in\Phi_{+}({\mathcal X})$ (resp., $\in\Phi_{-}({\mathcal X})$) if and only if $A-B_0\in\Phi_{+}({\mathcal X})$ (resp., $\in\Phi_{-}({\mathcal X})$), where B0 = ⊕mi = 1(Bi − μi); (iii) if $\pi_B(A,\lambda)\in\Phi_{+}({\mathcal X})$ (resp., $\in\Phi_{-}({\mathcal X})$) for some λ ≠ 0, then $A-\lambda B\in\Phi_{+}({\mathcal X})$ (resp., $\in\Phi_{-}({\mathcal X})$).