We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $F$ be a totally real field in which $p$ is unramified and let $B$ be a quaternion algebra over $F$ which splits at at most one infinite place. Let $\overline {r}:\operatorname {{\mathrm {Gal}}}(\overline {F}/F)\rightarrow \mathrm {GL}_2(\overline {\mathbb {F}}_p)$ be a modular Galois representation which satisfies the Taylor–Wiles hypotheses. Assume that for some fixed place $v|p$, $B$ ramifies at $v$ and $F_v$ is isomorphic to $\mathbb {Q}_p$ and $\overline {r}$ is generic at $v$. We prove that the admissible smooth representations of the quaternion algebra over $\mathbb {Q}_p$ coming from mod $p$ cohomology of Shimura varieties associated to $B$ have Gelfand–Kirillov dimension $1$. As an application we prove that the degree-two Scholze's functor (which is defined by Scholze [On the$p$-adic cohomology of the Lubin–Tate tower, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), 811–863]) vanishes on generic supersingular representations of $\mathrm {GL}_2(\mathbb {Q}_p)$. We also prove some finer structure theorems about the image of Scholze's functor in the reducible case.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.