The radiocarbon ages of mollusc shells from the Bogenfels Pan on the hyper arid southern coast of Namibia provide constraints on the Holocene evolution of sea level and in particular, the mid-Holocene highstand. The Bogenfels Pan was flooded to depths of 3 m above mean sea level (amsl) to form a large subtidal lagoon from 7300 to 6500 calibrated radiocarbon years before present (cal yr BP). The mollusc assemblage of the wave sheltered lagoon includes Nassarius plicatellus, Lutraria lutraria, and the bivalves Solen capensis and Gastrana matadoa, both of which no longer live along the wave-dominated southern Namibian coast. The radiocarbon ages of mollusc shell from a gravely beach deposit exposed in a diamond exploration trench indicate that sea level fell to near or 1 m below its present-day position between 6500 and 4900 cal yr BP. The rapid emergence of the pan between 6500 and 4900 cal yr BP exceeds that predicted by glacio-isostatic models and may indicate a 3-m eustatic lowering of sea level. The beach deposits at Bogenfels indicate that sea level rose to 1 m amsl between 4800 and 4600 cal yr BP and then fell briefly between 4600 and 4200 cal yr BP before returning to 1 m amsl. Since 4200 cal yr BP sea level has remained within one meter of the present-day level and the beach at Bogenfels has prograded seaward from the delayed arrival of sand by longshore drift from the Orange River. A 6200 cal yr BP coastal midden and a 600 cal yr BP midden 1.7 km from the coast indicate sporadic human utilization of the area. The results of this study are consistent with previous studies and help to refine the Holocene sea-level record for southern Africa.