Sustainability practices of a company reflect its commitments to the environment, societal good, and good governance. Institutional investors take these into account for decision-making purposes, since these factors are known to affect public opinion and thereby the stock indices of companies. Though sustainability score is usually derived from information available in self-published reports, News articles published by regulatory agencies and social media posts also contain critical information that may affect the image of a company. Language technologies have a critical role to play in the analytics process. In this paper, we present an event detection model for detecting sustainability-related incidents and violations from reports published by various monitoring and regulatory agencies. The proposed model uses a multi-tasking sequence labeling architecture that works with transformer-based document embeddings. We have created a large annotated corpus containing relevant articles published over three years (2015–2018) for training and evaluating the model. Knowledge about sustainability practices and reporting incidents using the Global Reporting Initiative (GRI) standards have been used for the above task. The proposed event detection model achieves high accuracy in detecting sustainability incidents and violations reported about an organization, as measured using cross-validation techniques. The model is thereafter applied to articles published from 2019 to 2022, and insights obtained through aggregated analysis of incidents identified from them are also presented in the paper. The proposed model is envisaged to play a significant role in sustainability monitoring by detecting organizational violations as soon as they are reported by regulatory agencies and thereby supplement the Environmental, Social, and Governance (ESG) scores issued by third-party agencies.