Bounds of exponential type are derived for the first-hitting time and occupation times of a real-valued random sequence which has a uniform negative drift whenever the sequence is above a fixed level. The only other assumption on the random sequence is that the increments satisfy a uniform exponential decay condition. The bounds provide a flexible technique for proving stability of processes frequently encountered in the control of queues.
Two applications are given. First, exponential-type bounds are derived for a GI/G/1 queue when the service distribution is exponential type. Secondly, geometric ergodicity is established for a certain Markov chain in which arises in the decentralized control of a multi-access, packet-switched broadcast channel.