The commercially available collar device MooMonitor+ was evaluated with regards to accuracy and application potential for measuring grazing behavior. These automated measurements are crucial as cows feed intake behavior at pasture is an important parameter of animal performance, health and welfare as well as being an indicator of feed availability. Compared to laborious and time-consuming visual observation, the continuous and automated measurement of grazing behavior may support and improve the grazing management of dairy cows on pasture. Therefore, there were two experiments as well as a literature analysis conducted to evaluate the MooMonitor+ under grazing conditions. The first experiment compared the automated measurement of the sensor against visual observation. In a second experiment, the MooMonitor+ was compared to a noseband sensor (RumiWatch), which also allows continuous measurement of grazing behavior. The first experiment on n = 12 cows revealed that the automated sensor MooMonitor+ and visual observation were highly correlated as indicated by the Spearman’s rank correlation coefficient (rs) = 0.94 and concordance correlation coefficient (CCC) = 0.97 for grazing time. An rs-value of 0.97 and CCC = 0.98 was observed for rumination time. In a second experiment with n = 12 cows over 24-h periods, a high correlation between the MooMonitor+ and the RumiWatch was observed for grazing time as indicated by an rs-value of 0.91 and a CCC-value of 0.97. Similarly, a high correlation was observed for rumination time with an rs-value of 0.96 and a CCC-value of 0.99. While a higher level of agreement between the MooMonitor+ and both visual observation and RumiWatch was observed for rumination time compared to grazing time, the overall results showed a high level of accuracy of the collar device in measuring grazing and rumination times. Therefore, the collar device can be applied to monitor cow behavior at pasture on farms. With regards to the application potential of the collar device, it may not only be used on commercial farms but can also be applied to research questions when a data resolution of 15 min is sufficient. Thus, at farm level, the farmer can get an accurate and continuous measurement of grazing behavior of each individual cow and may then use those data for decision-making to optimize the animal management.