Surrogate models of turbulent diffusive flames could play a strategic role in the design of liquid rocket engine combustion chambers. The present article introduces a method to obtain data-driven surrogate models for coaxial injectors, by leveraging an inductive transfer learning strategy over a U-Net with available multifidelity Large Eddy Simulations (LES) data. The resulting models preserve reasonable accuracy while reducing the offline computational cost of data-generation. First, a database of about 100 low-fidelity LES simulations of shear-coaxial injectors, operating with gaseous oxygen and gaseous methane as propellants, has been created. The design of experiments explores three variables: the chamber radius, the recess-length of the oxidizer post, and the mixture ratio. Subsequently, U-Nets were trained upon this dataset to provide reasonable approximations of the temporal-averaged two-dimensional flow field. Despite the fact that neural networks are efficient non-linear data emulators, in purely data-driven approaches their quality is directly impacted by the precision of the data they are trained upon. Thus, a high-fidelity (HF) dataset has been created, made of about 10 simulations, to a much greater cost per sample. The amalgamation of low and HF data during the the transfer-learning process enables the improvement of the surrogate model’s fidelity without excessive additional cost.