We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The effect of the propagation of a ring-rippled laser beam in the presence of relativistic and ponderomotive non-linearities on the excitation of ion-acoustic wave (IAW) and resulting stimulated Brillouin backscattering in collisionless plasma at relativistic powers is studied. To understand the nature of propagation of the ring ripple-like instability, a paraxial-ray approach has been invoked in which all the relevant parameters correspond to a narrow range around the irradiance maximum of the ring ripple. Modified coupled equations for growth of ring ripple in the plasma, generations of IAW and back-stimulated Brillouin scattering (SBS) are derived from fluid equations. These coupled equations are solved analytically and numerically to study the intensity of ring-rippled laser beam and excited IAW as well as back reflectivity of SBS in the plasma for various established laser and plasma parameters. It is found that the back reflectivity of SBS is enhanced due to the strong coupling between ring-rippled laser beam and the excited IAW. The results also show that the back reflectivity of SBS reduce for higher intensity of the laser beam.
This paper presents a theoretical model for the propagation/growth of a ring ripple, on a Gaussian electromagnetic beam, propagating in plasma with dominant relativistic-ponderomotive nonlinearity. A paraxial like approach has been invoked to understand the nature of propagation of the ring ripple like instability; in this approach, all the relevant parameters correspond to a narrow range around the irradiance maximum of the ring ripple. The dielectric function is determined by the composite (Gaussian and ripple) electric field profile of the beam. Thus, a unique dielectric function for the beam propagation and a radial field sensitive diffraction term, appropriate to the vicinity of the maximum of the irradiance distribution of the ring ripple has been taken into account. The effect of different parameters on the critical curves has been highlighted and the variation of the beam width parameter with the distance of propagation has been obtained for the three typical cases viz of steady divergence, oscillatory divergence and self-focusing of the ripple.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.