We prove some results for the solitons of the Ricci–Bourguignon flow, generalizing the corresponding results for Ricci solitons. Taking motivation from Ricci almost solitons, we then introduce the notion of Ricci–Bourguignon almost solitons and prove some results about them that generalize previous results for Ricci almost solitons. We also derive integral formulas for compact gradient Ricci–Bourguignon solitons and compact gradient Ricci–Bourguignon almost solitons. Finally, using the integral formula, we show that a compact gradient Ricci–Bourguignon almost soliton is isometric to a Euclidean sphere if it has constant scalar curvature or its associated vector field is conformal.