This paper concerns with the unsteady MHD flow of a second grade fluid between two parallel walls through porous media induced by rectified sine pulses shear stress. The analytical expressions for the velocity field and the adequate shear stress are determined by means of the Laplace transform technique and Fourier cosine and sine transforms and are written as a sum of steady state and transient solutions. The influence of side walls on the fluid motion, the distance between walls for which the velocity of the fluid in the middle of the channel is negligible, and the required time to reach the steady state are presented by graphical illustrations. As the second grade fluid parameter → 0 the problem reduces to the Newtonian fluids performing the same motion.