Denoting by v(t) the residual life of a component in a renewal process, Çinlar and Jagers (1973) and Holmes (1974) have shown that if E(v(t)) is independent of t for all t, then the process is Poisson. In this note we prove, under mild conditions, that if E(G(v(t))) is constant, then the process is Poisson. In particular if E((v(t))r) for some specific real number r ≧ 1 is independent of t, then the process is Poisson.