We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this study was to produce a low-cost anatomical model of adult male including lower limbs to evaluate the three-dimensional dose distribution for dosimetry measurements, especially in total body irradiation (TBI) and total skin electron therapy (TSET).
Materials and methods:
Computed tomography (CT) scan images of the atomic energy organisation RANDO phantom and lower limb CT scan images of 20 healthy persons were averaged. Selections of different body tissues substitute materials and phantom validation were performed according to previous studies worked on construction of radiation therapy phantoms.
Results:
The dosimetry aspect of the selected substitute materials from all considered methods showed that they were in good agreement with real human tissue, especially bone, with a percentage error of 0·5%. The results show that the electron densities obtained from the linear attenuation coefficient (reDLAC) for the tissue equivalent material used in the phantom is a better option for validation.
Conclusions:
This validated phantom has numerous advantages over the origin type of RANDO phantom. Therefore, using it in TBI and TSET dosimetry is recommendable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.