In, Tory and Pickard show that a simple subclass of unilateral AR processes identifies with Gaussian Pickard random fields on Z2. First, we extend this result to the whole class of unilateral AR processes, by showing that they all satisfy a Pickard-type property, under which correlation matching and maximum entropy properties are assessed. Then, it is established that the Pickard property provides the ‘missing’ equations that complement the two-dimensional Yule-Walker equations, in the sense that the conjunction defines a one-to-one mapping between the set of AR parameters and a set of correlations. It also implies Markov chain conditions that allow exact evaluation of the likelihood and an exact sampling scheme on finite lattices.