We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Large-pore La-Al-pillared montmorillonite was prepared by reacting montmorillonite with hydrothermally treated mixtures of aluminum chlorohydrate and lanthanum chloride. The large-pore La-Al-pillared montmorillonite is characterized by basal spacings of about 26 Å, surface areas of 300–500 mVg, and pore volumes in the range 0.2–0.3 cm2/g. Large-pore pillared montmorillonite products were obtained from solutions refluxed for >72 hr or treated in autoclaves at 120°–160°C for 12–96 hr. The most favorable pillaring solution for the production of large-pore La-Al-pillared montmorillonite had an OH/Al ratio of 2.5, a La:Al ratio of 1:5, and was 2.5 M with respect to Al. The elemental composition of large pore La-Al-pillared montmorillonite is similar to that of a conventional Al-pillared montmorillonite that has a basal spacing of about 19 Å. The 26-Å spacing is believed to be associated with the formation of large polymeric La-bearing Al-cations upon hydrothermal treatment of the solutions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.