Vertebrate myelin membranes are compacted and held in close apposition by three structural proteins of myelin, myelin basic protein, myelin protein zero (MPZ) and myelin proteolipid protein (PLP1/DMalpha). PLP1/DMalpha is considered to function as a scaffolding protein and play a role in intracellular trafficking in oligodendrocytes. In humans, point mutations, duplications or deletions of PLP1 are associated with Pelizaeus–Merzbacher disease and spastic paraplegia Type 2. PLP1 is highly conserved between mammals, but less so in lower vertebrates. This has led some researchers to question whether certain fish species express PLP1 orthologues at all, and to suggest that the function of PLP1/DMalpha in the central nervous system (CNS) may have been taken over by MPZ. Here, we review the evidence for the conservation of orthologues of PLP1/DMalpha in actinopterygian fishes and provide a comparison of currently available sequence data across 17 fish species. Our analysis demonstrates that orthologues of PLP1/DMalpha have been retained and are functionally expressed in many, if not all, extant species of bony fish. Many of the amino acids that, when mutated, are associated with severe CNS pathology are conserved in teleosts, demonstrating conservation of essential functions and justifying the development of novel disease models in species such as the zebrafish.