We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss a class of counting distributions motivated by a problem in discrete surplus analysis, and special cases of which have applications in stop-loss, discrete Tail value at risk (TVaR) and claim count modelling. Explicit formulas are developed, and the mixed Poisson case is considered in some detail. Simplifications occur for some underlying negative binomial and related models, where in some cases compound geometric distributions arise naturally. Applications to claim count and aggregate claims models are then given.
A method for analysing the risk of taking a too low reserve level by the use of Chain Ladder method is developed. We give an answer to the question of how much safety loading in terms of the Chain Ladder standard error has to be added to the Chain Ladder reserve in order to reach a specified security level in loss reserving. This is an important question in the framework of integrated risk management of an insurance company. Furthermore we investigate the relative bias of Chain Ladder estimators. We use Monte Carlo simulation technique as well as the collective model of risk theory in each cell of run-off table. We analyse deviation between Chain Ladder reserves and Monte Carlo simulated reserves statistically. Our results document dependency on claim number and claim size distribution types and parameters.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.