We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we look at graphs defined by a difference set in a usually abelian group. Difference sets in a vector space that are invariant under multiplication by scalars are equivalent to two-weight codes and to two-character subsets of a projective space. We survey a lot of examples of such two-character sets (infinite families and sporadic ones, the latter summarised in a table). We review cyclic codes, in particular cyclic two-weight codes and introduce the related Van Lint-Schrijver graphs, the Hill graph, the De Lange graphs and the Peisert graphs. Then our attention goes to the one-dimensional affine rank 3 graphs, which we review in some detail, including proofs of the parameter restrictions that lead to the different cases: the Paley graphs, the Van Lint-Schrijver graphs and the Peisert graphs. We also discuss the Paley graphs in some detail and provide a table with small strongly regular power residue graphs. The penultimate section is dedicated to graphs related to the action of the alternating group Alt(5) and the symmetric group Sym(4) on a projective line. In the last section, we review strongly regular graphs constructed from bent functions.
The first chapter contains the basics of the theory of strongly regular graphs. In particular all basic notions such as parameters and spectrum are rigorously defined. The standard example such as Johnson graphs, Hamming graphs, Paley graphs are introduced. We treat Seidel switching and regular two-graphs, (induced) subgraphs, strongly regular graphs with smallest eigenvalue —2, regular partitions and regular (intriguing) sets. We enumerate the small examples and discuss prolific constructions. This chapter also contains an introduction to two slightly more general objects needed in the book: distance regular graphs (including the main examples, and a discussion on imprimitivity), and association schemes and coherent configurations (including a brief discussion of the Bose-Mesner algebra, linear programming bound, code-clique theorem, Krein parameters, Euclidean representation, subschemas, the absolute bound and the mu-bound).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.