The process of software testing usually involves the correction of a detected bug immediately upon detection. In this article, in contrast, we discuss continuous time testing of a software with periodic debugging in which bugs are corrected, instead of at the instants of their detection, at some pre-specified time points. Under the assumption of renewal distribution for the time between successive occurrence of a bug, maximum-likelihood estimation of the initial number of bugs in the software is considered, when the renewal distribution belongs to any general parametric family or is arbitrary. The asymptotic properties of the estimated model parameters are also discussed. Finally, we investigate the finite sample properties of the estimators, specially that of the number of initial number of bugs, through simulation.