We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 6 introduces the hypothesis-testing process and relevance of standard error in reaching statistical conclusions about whether to accept or reject the null hypothesis using the z-test statistic. Type I and Type II errors, along with the types of statistical tests researchers apply in testing hypotheses, are presented; these include one-tailed (directional) versus two-tailed (nondirectional) tests. Three important decision rules are the sampling distribution of means, the level of significance, and critical regions. Type I and Type II errors influence the decisions we make about our predictions of relationships between variables. Statistical decision-making is never error-free, but we have some control in reducing these types of errors.
A directional hypothesis predicts the specific way in which data are affected by an experimental manipulation. This, therefore, fits well with severe testing by making a concrete, explicit prediction. However, one-tailed testing associated with directional hypotheses regularly receives criticism because it can look like a way to make it easy to achieve statistical significance. This chapter describes why this is a problem and makes the case that despite the fit with severe testing, two-tailed testing is still the better way to do statistical analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.