We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Develops the many-body one-particle Green function, and explains its physical interpretation in terms of the spectral function, self-energy, and quasiparticle. lifetime. Its application in angle-resolved photoemission spectroscopy is presented in detail. The time-evolution operator in the interaction picture is derived, and time-ordering and adiabatic switching-on are introduced as precursor tools to construct the Feynman–Dyson many-body perturbation theory. A detailed account of Wick’s theorem, normal ordering, and contractions is outlined. Feynman diagrams are constructed, and the emergence of the infinite Dyson series from irreducible diagrams is outlined. Two-particle Green function and the particle-hole excitation spectra are developed. Diagramatic application of RPA for interacting systems is described. The finite-temperature Matsubara Green function is introduced and developed, together with its Fourier series representation and the evaluation of Matsubara sums.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.