We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Two HII region surveys are considered. The first is a multi-band survey of over one hundred hypercompact HII (HCHII) candidates using the Jansky-VLA. The second survey, the deep-resolution ALMA Three-millimetre Observations of Massive Star-forming regions (ATOMS-ALMA), studied just under 500 and identified 89 cores that cocoon HCHII or UCHII sources observed in H40α; 32 hot molecular cores (HMCs) showing more than 20 COMs; and 58 HMC candidates not associated with HII regions. The study shows how, in the vicinity of newly formed OB protostars and HII regions at an early stage of evolution, we can begin to understand the dynamics of infall, outflow, and rotational motions, as well as the feedback roles of outflows, stellar winds, and HII regions.
The low-mass star formation Lupus complex sits within the expanding HII shell of the Upper Scorpius OB cluster, with shock impacts triggering multiple star formation. IRAS 15398 in Lupus I-1 is considered as a WCCC source rich in COMs, molecular line emissions allowing distinctions between molecules particularly prevalent in either compact or extended regions. Molecular emissions from close to the protostar as well as from gas spreading in outflow material are involved. Within the latter are found distinguishable localized components (‘blobs’) that show likely shock enhanced chemistry. As is the case for IRAS 16293 and NGC 1333, disk emission is separable from envelope emission through characteristic species and levels of molecular excitation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.