We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on the Cauchy problem for a one-dimensional quasilinear hyperbolic–parabolic coupled system with initial data given on a line of parabolicity. The coupled system is derived from the Poiseuille flow of full Ericksen–Leslie model in the theory of nematic liquid crystals, which incorporates the crystal and liquid properties of the materials. The main difficulty comes from the degeneracy of the hyperbolic equation, which makes that the system is not continuously differentiable and then the classical methods for the strictly hyperbolic–parabolic coupled systems are invalid. With a choice of a suitable space for the unknown variable of the parabolic equation, we first solve the degenerate hyperbolic problem in a partial hodograph plane and express the smooth solution in terms of the original variables. Based on the smooth solution of the hyperbolic equation, we then construct an iterative sequence for the unknown variable of the parabolic equation by the fundamental solution of the heat equation. Finally, we verify the uniform convergence of the iterative sequence in the selected function space and establish the local existence and uniqueness of classical solutions to the degenerate coupled problem.
We propose an implicit finite-difference method to study the time evolution of the director field of a nematic liquid crystal under the influence of an electric field with weak anchoring at the boundary. The scheme allows us to study the dynamics of transitions between different director equilibrium states under varying electric field and anchoring strength. In particular, we are able to simulate the transition to excited states of odd parity, which have previously been observed in experiments, but so far only analyzed in the static case.
Here we investigate the kinematic transports of the defects in the nematic liquid crystal system by numerical experiments. The model is a shear flow case of the viscoelastic continuummodel simplified fromthe Ericksen-Leslie system. The numerical experiments are carried out by using a difference method. Based on these numerical experiments we find some interesting and important relationships between the kinematic transports and the characteristics of the flow. We present the development and interaction of the defects. These results are partly consistent with the observation from the experiments. Thus this scheme illustrates, to some extent, the kinematic effects of the defects.
We consider the dynamics of the director in a nematic liquid crystal when under the influence of an applied electric field. Using an energy variational approach we derive a dynamic model for the director including both dissipative and inertial forces.
A numerical scheme for the model is proposed by extending a scheme for a related variational wave equation. Numerical experiments are performed studying the realignment of the director field when applying a voltage difference over the liquid crystal cell. In particular, we study how the relative strength of dissipative versus inertial forces influence the time scales of the transition between the initial configuration and the electrostatic equilibrium state.
In this paper, we investigate the effects of kinematic transports on the nematic liquid crystal system numerically and theoretically. The model we used is a “1+2” elastic continuum model simplified from the Ericksen-Leslie system. The numerical experiments are carried out by using a Legendre-Galerkin spectral method which can preserve the energy law in the discrete form. Based on this highly accurate numerical approach we find some interesting and important relationships between the kinematic transports and the characteristics of the flow. We make some analysis to explain these results. Several significant scaling properties are also verified by our simulations.
We present an asymptotic theory that includes in a perturbative expansion the coupling effects between the director dynamics and the velocity field in a nematic liquid crystal. Backflow effects are most significant in the presence of defect motion, since in this case the presence of a velocity field may strongly reduce the total energy dissipation and thus increase the defect velocity. As an example, we illustrate how backflow influences the speeds of opposite-charged defects.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.