We study 2-stage game-theoretic problem oriented 3-stage service policy computing, convolutional neural network (CNN) based algorithm design, and simulation for a blockchained buffering system with federated learning. More precisely, based on the game-theoretic problem consisting of both “win-lose” and “win-win” 2-stage competitions, we derive a 3-stage dynamical service policy via a saddle point to a zero-sum game problem and a Nash equilibrium point to a non-zero-sum game problem. This policy is concerning users-selection, dynamic pricing, and online rate resource allocation via stable digital currency for the system. The main focus is on the design and analysis of the joint 3-stage service policy for given queue/environment state dependent pricing and utility functions. The asymptotic optimality and fairness of this dynamic service policy is justified by diffusion modeling with approximation theory. A general CNN based policy computing algorithm flow chart along the line of the so-called big model framework is presented. Simulation case studies are conducted for the system with three users, where only two of the three users can be selected into the service by a zero-sum dual cost game competition policy at a time point. Then, the selected two users get into service and share the system rate service resource through a non-zero-sum dual cost game competition policy. Applications of our policy in the future blockchain based Internet (e.g., metaverse and web3.0) and supply chain finance are also briefly illustrated.