We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently Li and Yam (2005) studied which ageing properties for series and parallel systems are inherited for the components. In this paper we provide new results for the increasing convex and concave orders, the increasing mean residual life (IMRL), decreasing failure rate (DFR), the new worse than used in expectation (NWUE), the increasing failure rate in average (IFRA), the decreasing failure rate in average (DFRA), and the new better than used in the convex order (NBUC) ageing classes.
We demonstrate that the residual lifetime distribution of a compound geometric distribution convoluted with another distribution, termed a compound geometric convolution, is again a compound geometric convolution. Conditions under which the compound geometric convolution is new worse than used (NWU) or new better than used (NBU) are then derived. The results are applied to ruin probabilities in the stationary renewal risk model where the convolution components are of particular interest, as well as to the equilibrium virtual waiting time distribution in the G/G/1 queue, an approximation to the equilibrium M/G/c waiting time distribution, ruin in the classical risk model perturbed by diffusion, and second-order reliability classifications.
An explicit convolution representation for the equilibrium residual lifetime distribution of compound zero-modified geometric distributions is derived. Second-order reliability properties are seen to be essentially preserved under geometric compounding, and complement results of Brown (1990) and Cai and Kalashnikov (2000). The convolution representation is then extended to the nth-order equilibrium distribution. This higher-order convolution representation is used to evaluate the stop-loss premium and higher stop-loss moments of the compound zero-modified geometric distribution, as well as the Laplace transform of the kth moment of the time of ruin in the classical risk model.
In this paper, we investigate k-out-of-n systems with independent and identically distributed components. Some characterizations of the IFR(2), DMRL, NBU(2) and NBUC classes of life distributions are obtained in terms of the monotonicity of the residual life given that the (n-k)th failure has occurred at time t ≥ 0. These results complement those reported by Belzunce, Franco and Ruiz (1999). Similar conclusions based on the residual life of a parallel system conditioned by the (n-k)th failure time are presented as well.
In this note, we give new proofs of the closure property of ageing classes NBUC and NBU(2) under convolution to make up the gaps in the proofs of Cao and Wang (1991) and of Li and Kochar (2001).
In this paper we provide new results about stochastic comparisons of the excess lifetime at different times of a renewal process when the interarrival times belong to several ageing classes. We also provide a preservation result for the new better than used in the Laplace transform order ageing class for series systems.
Recently defined classes of life distributions are considered, and some relationships among them are proposed. The life distribution H of a device subject to shocks occurring randomly according to a Poisson process is also considered, and sufficient conditions for H to belong to these classes are discussed.
Suppose that a device is subjected to shocks governed by a counting process N = {N(t), t ≧0}. The probability that the device survives beyond time t is then H̄(t)=Σk=0∞Q̄ℙ[N(t)=k], where Q̄k is the probability of surviving k shocks. It is known that H is NBU if the interarrivals Uk, ∊ ℕ+, are independent and NBU, and Q̄k+j ≦ Q̄k· Q̄j holds whenever k, j ∊ ℕ. Similar results hold for the classes of the NBUE and HNBUE distributions. We show that some other ageing classes have similar properties.
The class of new better than used in convex ordering (NBUC) is shown to be closed under formation of parallel systems with independent and identically distributed components.
A new class of life distributions, namely new better than used in convex ordering (NBUC), and its dual, new worse than used in convex ordering (NWUC), are introduced. Their relations to other classes of life distributions, closure properties under three reliability operations, and heritage properties under shock model and Laplace-Stieltjes transform are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.